4 N
Types of local consistency

e (I,])-consistency
— any solution to a subproblem of | variables can be extended
to asolution including any | additional variables

» k-consistency

— any solution to a subproblem of k-1 variables can be
extended to a solution including an additional variable

— eguivalent to (k, 1)-consistency
— arc consistency Is 2-consistency
— path consistency is 3-consistency
* (1, K)-consistency is k inverse consistency

o /

Nayak CS 329A, Handout #8

/

Time and space complexity

e Both k—consistency and k inverse consistency take time

exponential in k

* Ingenerd, k-consistency requires creating and storing

constraints involving k-1 variables
— can require O(d«1) space

 However, k inverse consistency only filters out values for

variables
— worst case space requirement is linear

— ...and can even decrease the space requirement

/

Nayak

CS 329A, Handout #8

/

Neighborhood inverse consistency

« Let the neighborhood of avariable v consist of the variables
with which v shares a constraint

* Neighborhood inverse consistency enforces for each variable v
K inverse consistency for v and its k=1 neighbors

/

Nayak CS 329A, Handout #8

4 ™
Neighborhood inverse consistency

function NIC
Insert each variable v onto agenda A
while At {} do
vV = pop(A) and deleted = false
for eacha indom(v) do
iIf there is no solution to Nbd(v) with v assigned a then
dom(v) = dom(v) \ { a} and deleted = true
If dom(v) ={} then return “domain wipeout”
endif
If deleted then
for each uin Nbd(v) do A= AE {u}
endwhile
return “consistent”

_end NIC /

Nayak CS 329A, Handout #8

4 N
Constraint graphs

e Theprimal-constraint graph of a constraint network has
— anode for each variable

— an undirected edge between two nodes if the corresponding
variables occur in the same constraint

e Thedual-constraint graph of a constraint network has
— anode for ecah constraint

— an undirected |abeled edge between two nodes that share a
common variable

— edges are labeled by the shared variables

o /

Nayak CS 329A, Handout #8

-

Tree networks

e Constraint networks whose primal graph isatree
e Can be solved in time linear in the number of variables

/

Nayak CS 329A, Handout #8

4 N\
Solving atree network

procedur e tree-algorithm
Generate arooted tree ordering, d = Xy, X,, .., X,
for i =n downto 1l do

revise(Xy iy, X
It dom(x,;) ={} then “no solution exists’
endfor

Use backtracking to instantiate variables along d
end tree-algorithm

o /

Nayak CS 329A, Handout #8

-
Width

« Givenavariableordering d = Xy, X5, ..., X,

— the width of a node x; is the number of edges that connect x;
to nodes earlier in the ordering

e Thewidth of an ordering is the maximum width of all nodes
e Thewidth of a graph isthe minimum width of all orderings

/

Nayak

CS 329A, Handout #8

4 N
Directional consistency

e Given an ordering d, directional i-consistency along d requires
that any consistent instantiation of i—1 variables can be
consistently extended by any variable that succeeds all of them
In the ordering d

— strong directional | consistency also requires directional |
consistency for all | < |

 Theorem: An ordered constraint graph is backtrack freeif the
level of directional strong consistency along the order is
greater than the width of the ordering

o /

Nayak CS 329A, Handout #8

/

Enforcing directional consistency

/

Nayak CS 329A, Handout #8

4 ™
Adaptive consistency

procedur e Adaptive-consistency
for 1 = ndowntoldo
Connect all elements in parents(x;)

Perform consistency(x;, parents(x,))
endfor

end Adaptive-consistency

« Topology of induced graph can be found a priori
o Letw*(d) bethewidth of induced graph

o /

Nayak CS 329A, Handout #8

-

Nonseparable components

e Separation nodes (or articulation nodes) separate the graph
INto nonsepar able components (or biconnected components)

/

CS 329A, Handout #8

-

Cycle cutset scheme

e |nstantiating a variable cuts its own cycles

X5
%4 o X QXZ\‘
:> X2)

* When agroup of instantiated variables constitutes a cycle
cutset, the remaining network can be solved using the tree

algorithm

/

Nayak

CS 329A, Handout #8

